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A simulation study of an asymmetric exclusion model with open
and periodic boundaries for parallel dynamics
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Abstract. The effect of jumping rate probability on the phase diagram of an asymmetric exclusion model
is studied by numerical simulations. Density, current and velocity of particles are calculated for parallel
dynamics. In the open boundaries case for one species of particles (particles 1), a passage from first to second
order transition occurs by decreasing the jumping rate. In the periodic boundaries case, by introducing
another species of particle (particle 2) which plays the role of obstacle for particles 1, the average velocity
of particles 1 increases with increasing the jumping rate for small density. While the average velocity of
particle 2 decreases for small and intermediate densities.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion – 02.50.-r Probability
theory, stochastic processes, and statistics – 89.40.+k Transportation

1 Introduction

The stochastic dynamics of interacting particles have been
studied in the mathematical and physical literature [1,
2]. In the case of the mathematical literature it allows
an understanding of the asymptotic measures [3,4], the
fluctuations of tagged particles [5,6], and the microscopic
structure of shocks [7–9]. In the case of the physical lit-
erature, driven lattice gases with hard core repulsion pro-
vide models for the diffusion of particles through narrow
pores and for hopping conductivity [10], and belong to
the general class of non-equilibrium models which includes
driven diffusing systems [11,12]. They are closely linked to
growth processes [13–16], and can also be formulated as
traffic jam or queuing problems [5]. The fully asymmet-
ric exclusion model corresponds to the case where parti-
cles hop only in one direction. During any time interval
∆t each particle has a probability ∆t of jumping to its
right-hand neighbour if this neighbouring site is empty.
This model has been solved exactly in one dimension with
open boundary conditions [17–20]. A simple way of ob-
taining the solution consists of representing the weights of
configurations in the steady state as products of non com-
muting matrices [19,20]. Several phase transitions were
found for this model. This method has been extended to
the case of a system consisting of one species [21] and two
species [22–25] of particles on a ring. The exact results
are illustrated for continuous time dynamics (i.e. infinites-
imal ∆t), where only one particle can move during each
time interval ∆t. The parallel update of the asymmetric
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exclusion model can be introduced to obtain the phase di-
agram using Monte-Carlo simulations [26]. The aim of this
paper is to study the effect of jumping rate ∆t on density,
current and the phase diagram in the open boundaries case
and on velocities of particles in the case, of two species of
particles on a ring by numerical simulations.

2 Model

We consider a one-dimensional lattice of length L. Each
lattice site can be empty or occupied by one particle.
Hence the state of the system is defined by a set of
occupation numbers {τ1, τ2, ..., τL} while τi = 1 (τi = 0)
means that site i is occupied (empty). During each time
interval ∆t, each particle in the system has a probability,
p, of jumping to the empty adjacent site on its right
(and does not move otherwise), hereafter we consider
p = ∆t (0 ≤ p ≤ 1). Particles are injected at the left
boundary with a rate α∆t and removed on the right with
a rate β∆t. Thus if the system has the configuration
{τ1(t), τ2(t), ..., τL(t)} at time t it will change at time
t+∆t to the following:

For 1 < i < L,

τi(t+∆t) = 1 with probability
pi = τi(t) + [τi−1(t)(1− τi(t))− τi(t)(1− τi+1(t))]∆t

τi(t+∆t) = 0 with probability 1− pi;
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Fig. 1. Example of configurations obtained after even steps

for system size L = 8, for jumping rate ∆t = 1. (•), means an

occupied site. (◦) means an empty site.

For i = 1,

τ1(t+∆t) = 1 with probability
p1 = τ1(t) + [α(1− τ1(t))− τ1(t)(1− τ2(t))]∆t

τ1(t+∆t) = 0 with probability 1− p1;

For i = L,

τL(t+∆t) = 1 with probability
pL = τL(t) + [τL−1(t)(1− τL(t)) − βτL(t)]∆t

τL(t+∆t) = 0 with probability 1− pL.

The dynamics of the system are given by the following
equations: For 1 < i < L,

∆〈τi〉

∆t
= 〈τi−1(1− τi)〉 − 〈τi(1− τi+1)〉;

For i = 1,

∆〈τ1〉

∆t
= α〈(1− τ1)〉 − 〈τ1(1− τ2)〉;

For i = L,

∆〈τL〉

∆t
= 〈τL−1(1− τL)〉 − 〈βτL〉.

Once these relations are written, one can calculate the
time evolution of any quantity of interest. The problem
however is that the computation of the one point func-
tions 〈τi〉 requires the knowledge of the two point functions
〈τiτi+1〉 and 〈τi−1τi〉. The problem is an N -body problem
in the sense that the calculation of any correlation func-
tion requires the knowledge of all the others, this makes
the problem intractable.

In our simulations the rule described above is updated
in parallel, i.e. during one updating procedure the new
particle positions do not influence the rest and only previ-
ous positions have to be taken into account. During each
of the time steps, each particle moves one site unless the
site on its right-hand side is occupied by another parti-
cle. Figure 1 shows such a parallel updating process. In
order to compute the average of any parameter u (〈u〉),
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Fig. 2. For N = 51 and β = 0.7, the full line present an exact
solution and the number accompanying each curve denote the
value of ∆t. (a) The variation of the average occupaition of the
middle site ρ as a function of the rate of injected particles α.
(b) The variation of the average occupation of sites i(ρ(i)) as
a function of i for α = 0.6.

the values of u(t) (t = n∆t, n is an integer) obtained from
5× 104 to 105 time steps are averaged. Starting the simu-
lations from random configurations, the system reaches a
stationary state after a sufficiently large number of time
steps. In all our simulations we averaged over 50–100 ini-
tial configurations.

3 Open boundaries with one species
of particles

Open boundary conditions means that particles are in-
jected at one end of the lattice and are removed at the
opposite end. The asymmetric exclusion model with open
boundaries exhibits phase transitions. In this section we
study the influence of ∆t defined in the preceding section
on the phase diagram (α, β). Figure 2a shows the plot of
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the average occupation of the middle site, ρ = 〈τ(N+1)/2〉,
versus α for various values of ∆t and fixed value of
β (β = 0.7). We distinguish two regions when α is var-
ied, a region in which ρ increases with α (ρ(α) = α for
∆t = 0.1) when α < β, and a region in which ρ does not
depend upon α when α > β. By increasing ∆t, ρ decreases
in the first region, while it increases in the second region
for sufficiently large values of ∆t (ρ remains unchanged for
low values of ∆t). The transition between these regions is
continuous for low ∆t, and exhibits an inflection point at
α = β for high values of∆t which means that the system is
in unstable equilibrium state. So, the difference between
injected and removed rates of particles ((α − β)∆t) in-
creases (decreases) for α > β (α < β) with increasing
∆t. Moreover, for low values of α (α < β), when ∆t in-
creases most particles can move and change their location
in each time step which reduces the interactions between
particles. Therefore, the current increases which forces the
particles to leave the lattice. For high values of α (α > β),
a few particles move using newly created vacancies while
most particles remain immobile, patches of local queues
of particles cover the whole system. There is no apparent
global structure. By increasing ∆t, the particles partici-
pate in collective moves, which allows an increase of queue
sizes in the right side.

In order to investigate the contribution that the jump-
ing rate, ∆t, affects upon the density inside the chain,
Figure 2b gives for fixed values of α and β, an indica-
tion of how much the average occupation of each posi-
tion i (ρ(i) = 〈τi〉) changes as ∆t is modified. The full
line represents the calculated 〈τi〉′s matrix formulation
[19,20], while the dashed lines show the effect of ∆t. The
observed shifts may be interpreted as follows. For very
large values of ∆t (∆t = 1), the average occupation in-
creases monotonously as a function of increasing the po-
sition. The rate of increase depends on the magnitude of
the position: the higher the position, the larger the rate.
Indeed, for high values of jumping rate the particles have
a tendency to move toward the right of the chain, then
the density in the right side is greater than the left one.
For average values of ∆t (∆t = 0.5), the average occu-
pation decreases almost linearly in low positions, with a
relatively slow decay in high positions. For low values of
∆t (∆t = 0.1), a slow decay of the average occupation
in low positions is followed by a linear decrease regime
in average positions and rapid decay in high positions. In
these cases, as ∆t decreases, the particles do not move
more rapidly, this implies an increase (reduction) of den-
sity in low (high) position sites. The system exhibits first
and second order transitions. Figure 2a shows that the or-
der parameter (average occupation of the middle site ρ)
does not exhibit a sharp transition. The situation is quite
similar to the behavior of the order parameter in finite
systems [27]. In order to have a suitable criterion for the
determination of the transition; we identify the first order
transition for the system size L by the appearance of the
peak in the derivative of ρ(α) function with respect to ρ,
otherwise, the derivative will undergo a jump at the sec-
ond order transition. The size independence of the position
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Fig. 3. (a) The average occupation of the middle site ρ versus
α, for β = 0.3 and various system sizes L. (b) The fit of the
derivative of ρ versus α, for β = 0.8 and various system sizes
L.

of these transitions, allows us to define the first order
(second order) transition point αc by the intersection of
the ρ(α)(dρ(α)/dα) curves plotted for various sizes. The
numerical derivation amplifies the errors of the data so
we had to smooth the curves before further calculations.
Figures 3a and 3b show, respectively, the plot of ρ(α) and
dρ(α)/dα curves, run at various values of L. For β = 0.3
and ∆t = 0.1; Figure 3a exhibits a first order transition
at αc = 0.3± 0.02. For β = 0.8 and ∆t = 0.1; Figure 3b
exhibits a second order transition at αc = 0.5± 0.02. The
current through the bond ((N + 1)/2, (N + 3)/2) is sim-
ply J = 〈τ(N+1)/2(1− τ(N+3)/2)〉, because during the time
∆t the probability that a particle jumps from (N + 1)/2
to (N + 3)/2 is τ(N+1)/2(1 − τ(N+3)/2)∆t. Figure 4b (for
∆t = 0.1) shows the behavior of the current through the
bond ((N + 1)/2, (N + 3)/2), it is maximal for large α,
and this maximal value increases with increasing β. De-
pending on the values of the density, ρ, and the current,
J , the system studied exhibits three phases; phase (I) low
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Fig. 4. For ∆t = 0.1; (a) Variation of ρ as a function of α.
(b) Variation of J (current) as a function of α. The number
accompanying each curve in Figures 4a and 4b denotes the
value of β for N = 101.

density phase, phase (II) high density phase and phase
(III) maximal current phase. The nature of the transi-
tion between these phases depends upon the values of α,
β and ∆t. In this sense we give a typical example where
ρ varies as a function of α for fixed value of β. Indeed,
when β increases, the transition changes from a first to
second order transition, as illustrated in Figure 4a for
small value of ∆t. Collecting these results we obtain the
phase diagram as shown in Figure 5a. The low and high
density phases are separated by a first-order transition
line. Each of these phases undergoes continuous transi-
tions to the phase at maximal current. To illustrate the
effect of ∆t we give the phase diagrams for three values of
∆t. For ∆t = 0.1, the first order transition line between
phases (I) and (II) reaches α = β = 0.5 (see Fig. 5a),
in agreement with matrix formulation results [19,20].

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
at

e 
of

 r
em

ov
ed

 p
ar

tic
le

s

Rate of injected particles

Phase (I)

Phase (II)

Phase (III)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
at

e 
of

 r
em

ov
ed

 p
ar

tic
le

s

Rate of injected particles

Phase (I)

Phase (II)

Phase (III)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
at

e 
of

 r
em

ov
ed

 p
ar

tic
le

s

Rate of injected particles

Phase (I)

Phase (II)

 

Fig. 5. Phase diagram (α, β); (a) ∆t = 0.1; (b) ∆t = 0.8;
(c) ∆t = 1.

This value becomes 0.72 for ∆t = 0.8 (see Fig. 5b), and 1
for ∆t = 1 (see Fig. 5c), which means that for ∆t = 1
the phase at maximal current exists only at the point
α = β = 1 [28].
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4 Periodic boundaries with two species
of particles

The implementation of the periodic boundaries means
that upon leaving the lattice re-enters on the opposite
side. The periodic boundary condition with one species
of particles on a ring has been studied exactly by Schad-
schneider and Schreckenberg [29]. Here we consider a ring
of N sites with two species of particles represented by 1
and 2, and holes represented by 0 in which the hopping
rates are:

10 −→ 01 with rate 1

20 −→ 02 with rate p20

12 −→ 21 with rate p12.

To illustrate a situation with two species, let us consider
on a ring of N sites a single particle 2 and M particles 1.
In order to compute the average velocity v of any species
of particles at a given density, we denote v(t) the average
velocity per particle at time t, i.e., the ratio of the average
jumps per particle to the unit time steps ∆t. The values
of the average velocity v(t) (t = n∆t, n is an integer)
of particles obtained from 5 × 104 to 105 time steps are
averaged. The parameters p20 and p12 are chosen such
that:

p12 < 1− p20.

This implies in particular that p20 < 1 and p12 < 1, since
particle 2 is slower than particles 1 and as p12 < 1, it
plays the role of a moving obstacle. Both first and second
class of particles hop forward when they have a hole to
their right, but when a first class particle has a second
class particle on its right the two particles interchange
positions. Therefore a second class particle tends to move
backwards in an environment of a high density and tends
to move forwards in an environment of a low density. Using
numerical simulations for N = 101, the average velocity
of particles 1, v1, and the average velocity of particle 2,
v2, versus the density of particles 1, ρ = M/N , are given,
respectively, in Figures 6a and 6b for specific parameters
p20 and p12, and various values of ∆t. The various behav-
iors can be classified as follows [22–25]. For small values of
density (p . 0.25), both v1 and v2 decrease on increasing
ρ. Although, the jumping rate has an opposite effect on
these velocities. The average velocity v1 increases with ∆t
as this is the case of one species of particles [29], while v2

decreases as the jumping rate increases. Since the increase
of the jumping rate allows a uniform distribution of parti-
cles 1, the particle 2 undergoes more and more backward
moves in an environment.

For intermediate densities (0.25 . ρ . 0.85), the av-
erage velocity of particles 1 decreases as the density ρ
increases while the average velocity of particle 2 does not
depend upon the density ρ. This means that the particle
2 moves as if the site ahead of it was always empty and
the site behind it always occupied. In this stage the ring
exhibits two macroscopic regions: a region of high den-
sity following the particle 2 and a region of low density.
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Fig. 6. For p20 = 0.15 and p12 = 0.25; (a) Variation of average
velocity v1 as a function of density of particles 1; (b) Variation
of average velocity v2 as a function of density of particles 1.
The number accompanying each curve in Figures 6a and 6b
denotes the value of ∆t for N = 101.

Like in the case of the low density, the increase of ∆t leads
to the growth of backwards movement of the particle 2:
This suggest that as the particle 2 blocks the particles 1
behind it, an increase of the jumping rate strengthens this
blockage, and since p21 > p20, we have the growth of the
backwards movement of the particle 2. For high density
(ρ & 0.85), the average velocities v1 and v2 continue their
decrease, both velocities are insensitive to the variation of
the jumping rate. Indeed, the blockage undergone by the
particles 1 behind the particle 2 plays an opposite role of
the one played by the jumping rate ∆t, this is true for
intermediate and high densities. Concerning the particle
2, the regions behind and ahead of it tend to have the
same density, and as the distribution of particles 1 along
the lattice remains qualitatively unchanged on varying∆t,
the average velocity v2 does not depend upon the jumping
rate ∆t.
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5 Conclusion

A computer-simulation is introduced to study the contri-
bution of the jumping rate ∆t on the (α, β) phase diagram
in the case of open boundaries. The jumping rate ∆t has
for effect to investigate the difference between the sequen-
tial movement and the parallel movement which in gen-
eral produce stronger correlation. So, as ∆t decreases, the
first order transition between low and high density phases
disappears and is replaced by the continuous transition
between these phases and the maximal current phase for
high values of α and β. Measurements of the order param-
eter show that the maximal current phase only occurs on
the point α = β = 1 at ∆t = 1. Another interesting aspect
is the dependence of the average velocity of particles on
the variation of ∆t in the periodic boundaries case, where
the average velocity of particles increases with ∆t. Study-
ing the effect of ∆t on the velocities of the two species of
particles on a ring, the jumping rate acts are seen only
at small density on particles 1, while it is manifested on
particle 2 for small and intermediate densities of particles
1. Increasing ∆t, the average velocity of particles 1 (parti-
cle 2) increases (decreases). The known exact results have
been obtained for small jumping rate [17–25].

The interpolation between the discrete and continuous
time dynamics presented above could be extent to some
results; such as partial asymmetry [19,30], the diffusion
constant in systems with open boundary conditions [31],
transient properties [32]. However there remains a num-
ber of simple generalizations of the asymmetric exclusion
model such as the case of a fixed blockage [33], two species
of particles with open boundaries [34,35] and the applica-
tion to traffic flow [36,37].
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